Neuronal cell biocompatibility and adhesion to modified CMOS electrodes.

نویسندگان

  • Anthony H D Graham
  • Chris R Bowen
  • John Taylor
  • Jon Robbins
چکیده

The use of CMOS (Complementary Metal Oxide Semiconductor) integrated circuits to create electrodes for biosensors, implants and drug-discovery has several potential advantages over passive multi-electrode arrays (MEAs). However, unmodified aluminium CMOS electrodes may corrode in a physiological environment. We have investigated a low-cost electrode design based on the modification of CMOS metallisation to produce a nanoporous alumina electrode as an interface to mammalian neuronal cells and corrosion inhibitor. Using NG108-15 mouse neuroblastoma x rat glioma hybrid cells, results show that porous alumina is biocompatible and that the inter-pore distance (pore pitch) of the alumina has no effect on cell vitality. To establish whether porous alumina and a cell membrane can produce a tight junction required for good electrical coupling between electrode and cell, we devised a novel cell detachment centrifugation assay to assess the long-term adhesion of cells. Results show that porous alumina substrates produced with a large pore pitch of 206 nm present a significantly improved surface compared to the unmodified aluminium control and that small pore-pitches of 17 nm and 69 nm present a less favourable surface for cell adhesion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold

Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...

متن کامل

The Study of Collagen Immobilization on a Novel Nanocomposite to Enhance Cell Adhesion and Growth

Background: Surface properties of a biomaterial could be critical in determining biomaterial’s biocompatibility due to the fact that the first interactions between the biological environment and artificial materials are most likely occurred at material’s surface. In this study, the surface properties of a new nanocomposite (NC) polymeric material were modified by combining plasma treatment and...

متن کامل

Comparison of Biocompatibility of Various Membranes with Fibroblasts

  Objective: Different techniques have been suggested for the repair of bone defects at the injured sites. Use of biomembranes, or application of plasma rich in growth factor (PRGF) at the site of proliferation of osteoblasts are among the suggested techniques. The current study aimed to compare the biocompatibility of human periodontal ligament fibroblasts (hPLF) cultured on Hypro-Sorb F, Peri...

متن کامل

اصلاح سطح ابرآبگریز پلیمر پلی‌پروپیلن با هدف بهبود برهم‌کنش‌های بیولوژیک

The significance of producing superhydrophobic surfaces through modification of surface chemistry and structure is in preventing or delaying biofilm formation. This is done to improve biocompatibility and chemical and biological properties of the surface by creating micro-nano multilevel rough structure; and to decrease surface free energy by Fault Tolerant Control Strategy (FTCS) . Here, we pr...

متن کامل

Comparison of the Effect of Hydrophilicity on Biocompatibility and Platelet Adhesion of Two Different Kinds of Biomaterials

      Determination of blood compatibility is an important problem in blood contacting devices. In this study, two classes of materials including polyurethane (based on polyethylene glycol and poly tetrametylene oxide) and polyvinyl alcohol samples, with different hydrophilicity properties were synthesized and their physico-chemical properties were compared. Water uptake ratio, FTIR spectroscop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical microdevices

دوره 11 5  شماره 

صفحات  -

تاریخ انتشار 2009